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We present one effective multicanonical molecular dynamics(MCMD) algorithm accelerating the conver-
gence of rough energy landscapes simulations via an adaptive force-biased iteration scheme. Our method
utilizes several short MCMD simulations with dynamically updated weights and combines them to estimate the
density of states via multiple histogram technique. The key step of our algorithm is the adaptive refinement for
the derivative of multicanonical weight, which allows the system to enlarge the sampling energy range main-
taining the statistical accuracy. The performance of our method has been validated for atomic Lennard-Jones
clusters.
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Recently, multicanonical sampling(MUCA) has become
one of the primary tools to study equilibrium properties of
diverse complex systems, exhibiting a quasiergodic behavior
[1]. Since configurational spaces of complex systems are ef-
fectively partitioned into basin attractions surrounded by
high energy barriers, conventional simulations employing the
Boltzmann weight often fail to sample thermally accessible
phase space due to a trapping in one of local minima. To
circumvent this quasiergodicity, MUCA uses a non-
Boltzmann weight, which is iteratively modified to allow the
system to visit high energy barrier regions more frequently
[2]. Combined with Monte Carlo(MC) or molecular dynam-
ics (MD) algorithm, MUCA has been proved to be very ef-
fective for studies of phase transitions of lattice spins[2] and
folding problems of small peptides[3]. One limitation of
MUCA is its unknown weight dependence. Since the weight
is inversely proportional to the density of states, i.e.,VsEd,
the determination of weight becomes very difficult for large
size systems having a huge dynamic range ofVsEd. There-
fore, many theoretical efforts[4–7] have been devoted to
accelerate the convergence for the determination of weight in
MUCA.

In this Brief Report, we developed one effective method
to accelerate the convergence of multicanonical MD
(MCMD) by combining an adaptive force-biased iteration
with an umbrella sampling scheme. In contrast to conven-
tional MCMD associated with a long production run with
predetermined weight, we performed several short MCMD
simulations with dynamically updated weights, and then
combines them to estimate the density of states through mul-
tiple histogram technique[8]. The critical feature of our
method is the adaptive refinement for the derivative of mul-
ticanonical weight, which enables a considerable enhance-
ment for the rate of convergence maintaining the statistical
accuracy of the simulation. The effectiveness of our method

has been validated for atomic Lennard-Jones(LJ) clusters.
Let us begin by briefly reviewing the conventional

MCMD, in which multicanonical potentialasEd is iteratively
determined using

ak+1sEd = aksEd +
1

b0
ln PksEd, s1d

wherePksEd is the probability density function(PDF) at kth
iteration andb0 is an arbitrarily chosen reference tempera-
ture [3]. As the iteration proceeds,asEd approachesT0SsEd,
SsEd being the microcanonical entropy ofkB ln VsEd. The
multicanonical ensemble associated with the weightwksEd
=e−b0aksEd, is sampled by the constant temperature MD atb0
with the energy-dependent force scaling asṗi =nksEdf i, nk

=]EaksEd. Here,pi and f i correspond to the momentum and
force of the particlei on the original potential energyE,
respectively[3].

One drawback of the potential-biased MCMD using Eq.
(1) is that the simulation requires human interventions in the
iteration to representasEd as a smooth function. However,
the smoothing process is actually redundant since the trajec-
tory of the particle is not determined byaksEd, but nksEd.
Based on this, we developed the force-biased multicanonical
MD (FB-MCMD) employing

nk+1sEd = nksEd + FksEd, s2d

where b0FksEd=]E ln PksEd. The derivation of Eq.(2) is
straightforward denoting that it is obtained by differentiating
both sides of Eq.(1), but the exact physical meaning of the
force-biased iteration can be appreciated in the stochastic
formulation of MUCA [5]. According to our analysis[5,9],
the iteration procedures in Eq.(2) are equivalent to the dy-
namical processes approaching a free Brownian motion via
the cancellation of the deterministic force in corresponding
Langecvin equation, and the uniform sampling weight
nSsEd=T0/TSsEd, TSsEd=f]SsEd /]Eg−1, can be estimated by*Corresponding author. Email address: jaegil@bu.edu
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inverting the functional relationship between the average en-
ergy UsTd and the temperature asnS=U−1sEd.

In FB-MCMD, the system moves away from previous
sampled regions by the force biasingFksEd and wanders
another unexplored regions via the canonical samplings at
both energy ends[9]. Since the sampling range is extended
as a function of the iteration, the number of sampling in each
iteration step has been also increased to maintain the statis-
tical accuracy asNk

FB=kN1, N1 being the number of sampling
in the first iteration. The typical feature of FB-MCMD has
been demonstrated in the simulation of 19-atoms LJ cluster
(LJ19) of E=4eoi, j

N fss / r ijd12−ss / r ijd6g with s=3.4 Å and
e=0.2472 kcal/mol corresponding to Ar atom. The LJ clus-
ter has been widely used to test many sampling algorithms
due to its topographical feature of rough energy landscapes
[10–12]. The simulation has been done using the program
PRESTOX [13] with 10 fs time step, 0.1 kcal/mol bin size,
andN1=23105 MD steps atT0=0.45e. To prevent a cluster
evaporation, a repulsive spherical wallUcsr d=k0sr −Rcd2 has
been imposed onr ùRc=1.75s with k0=50 kcal/mol. As ob-
served in Fig. 1(a), the simulation shows a typical random
walk in energy space and extends the sampling range to a
low energy region with the updates of the weight indicated

by arrows alongx axis. The effective temperatureT̃ksEd
=1/nksEd in Fig. 2(a) converges to the valid one at 7th itera-
tion, allowing the system to swap an entire energy space
several times without further refinements for the weight. The
conformational state of LJ cluster has been checked by cal-
culating the bond length fluctuation d=f2/NsN
−1dgoi, j

N ÎDr ij / kr ijl where Dr ij =kr ij
2l−kr ijl2, k…l being the

time average over 104 MD steps[14]. The average mobility
of atoms indicated byd in Fig. 1(a) is very small in a solid-
like phase of low energy region and large in a liquidlike
phase above the melting point identified by a plateau in Fig.
2(a).

For systems having a small degrees of freedom, FB-
MCMD works very well through the automatic determina-
tion of the weight. However, the convergence has not been
improved compared to the potential biased MCMD due to
the multiple increment of the sampling data asNk

FB=kN1, that
is intractable for complex systems having a large dynamic
range. To accelerate the convergence of the simulation, here
we modified FB-MCMD in various aspects. First, we use the
adjusted number of sampling asNk

Ad=N1Sk−1/S1 sk.1d, Sk

=Eh
k−El

k being the sampled energy range atkth iteration.
Both Eh

k and El
k are updated every iteration step using

minfE1
k ,E1

k−1g and maxfE2
k ,E2

k−1g, respectively,E1
k andE2

k be-
ing the lowest and highest energies sampled atkth iteration.
Notice thatNk

Ad is monotonically increasing as a function of
the iteration, but much smaller thanNk

FB sinceSkùSk−1. For
example,N7

Ad/N7
FB,0.5 in Fig. 2(a). However, FB-MCMD

with an adjustableNk
Ad has one problem that the force scaling

function might be exposed to a statistical noise due to a poor
sampling statistics ofPksEd. To solve this problem, we de-
veloped an adaptive iteration scheme for the force scaling
function as

nk+1sEd = nT
ksEd + FT

ksEd, s3d

where

nT
ksEd =

o j=1

k
f jsEdn jsEd

o j=1

k
f jsEd

,

f jsEd=Nj
AdwjsEd /Zj, andb0FT

ksEd=]E ln PT
ksEd, PT

ksEd being
the total PDF defined aso j=1

k Nj
AdPjsEd. The relative partition

function Zj is self-consistently determined asZi
=oEwisEdVksEd, VksEd being the approximate density of

FIG. 1. Energy trajectory(black) and bond length fluctuationd
(gray) for (a) FB-MCMD, (b) AdFB1, and(c) AdFB2 for LJ19.
Arrows in all figures represent the weight updates. Further updates
in (b) are not represented beyond 10th iteration.

FIG. 2. Effective temperatureT̃ksEd as a function of the iteration
for (a) FB-MCMD, (b) AdFB1, and(c) AdFB2 for LJ19.(d) Con-

vergent effective temperatures ofT̃7 in FB-MCMD, T̃9 in AdFB1,

and T̃7sEd AdFB2.
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states determined from multiple histogram analysis for simu-
lations with weightswjsEd and resulting PDFsPjsEd as
o j=1

k Nj
AdPjsEd /o j=1

k f jsEd. Notice that differentiating both
sides of the logarithm ofVksEd and identifyingb0nk+1sEd
=] ln VksEd /]E gives Eq.(3). The adaptive force-biased it-
eration in Eq.(3) has two contributions of the weighted av-
eragenT

ksEd of all previous force scaling functionsn jsEd and
the mean forceFT

ksEd derived from the total PDF. Since all
previous simulations are adaptively combined to estimate
next weight, the iteration becomes very robust and the sta-
tistical uncertainty by a poor statistics ofPksEd can be sig-
nificantly reduced.

Our next modification is to combine the adjusted FB-
MCMD (AdFB-MCMD) with an umbrella sampling scheme.
Contrary to conventional MCMD associated with a long pro-
duction run with predetermined weight, here we performed
several short MCMD simulations with dynamically updated
weightn jsEd and then combined them to estimate the density
of statesVsEd via multiple histogram technique. The neces-
sary condition for the success of this approach is that the
number of samplingNk

Ad is relatively long enough for the
system to sample the ensemblewjsEd, and the perturbation
due to the update of the weight should be negligible. The
former condition is realized by choosing an appropriate large
N1 and the latter one is also effectively achieved since the
weight rapidly converges to the unique one and does not
change with further iterations. The detailed simulation
scheme is outlined as follows.(i) Perform MCMD atb0 with
n1sEd=1. (ii ) By calculatingnT

ksEd and FT
ksEd from the en-

ergy histogram, update the force scaling function using

nk+1sEd = 5 Eq .s3d for El
k ø E ø Eh

k,

1

T̃k+1sEl
kd + jsE − El

kd
for E , El

k, 6
s4d

where j=fT̃k+1sEh
kd−T̃k+1sEl

kdg / f2sEh
k−El

kdg. In Eq. (4), we
used the linear extrapolation having the slopej for the esti-

mation of the effective temperatureT̃k+1 for E,El
k. Notice

that T̃k+1=1/nk+1 is well defined for the sampled region of
El

køEøEh
k. (iii ) Repeat steps(ii ) to obtain a flat energy dis-

tribution. (iv) CalculateVsEd by joining all simulation re-
sults of a j =en jsxddx and Pj using multiple histogram tech-
nique. The canonical PDF and the ensemble average of any
observableO are obtained asP0sE,Td=edEVsEde−bE and
kOlT=edEP0sE,TdOsEd, respectively.

The validity of AdFB-MCMD has been first examined by
monitoringN1 dependence for LJ19. Actually,N1 should be
chosen not to be small since the success of AdFB-MCMD
relies on the fidelity of the sampling statistics in each itera-
tion step. We compared two simulations ofN1=105 MD
steps (AdFB1) and 33105 MD steps (AdFB2) with FB-
MCMD result. The energy samplings in Figs. 1(b) and 1(c)
show the same characteristic of FB-MCMD with subsequent
enlargements of the sampling ranges to an unexplored low
energy region via automatic determinations of weights. How-
ever, the updates of the weight indicated by arrows in Figs.

1(b) and 1(c) are more frequent due to an optimal adjustment
of Nk

Ad compared to FB-MCMD. The effective temperature
for AdFB1 in Fig. 2(b) shows some fluctuations at low en-
ergy ends in early iterations, but rapidly converges to the
vaild one at 9th iteration. On the other hand, the statistical
uncertainty of AdFB2 with a largeN1 is noticeably reduced
and the weight reaches the convergent one at 7th iteration.

All convergent weights ofT̃9sEd in AdFB1 at 1.4 ns and

T̃7sEd in AdFB2 at 3.0 ns are in a good agreement withT̃7sEd
in FB-MCMD at 4.2 ns as in Fig. 2(d), demonstrating the
acceleration of the convergence of AdFB-MCMD. The accu-
racy of simulations has been checked by comparing thermo-
dynamic quantities in Fig. 3. The differences in the average
energy UsTd are indistinguishable and the specific heats
CvsTd also show a good agreement except for low tempera-
ture region, in which the sampling statistics of FB-MCMD is
bad.

Next, we examined our method for LJ31 having a more
complicated topography associated with low lying multiple
minima [11,12]. Conventional multicanonical MC shows an
anomalous behavior in thermodynamic properties such as an
extra peak or bump in the specific heat at low temperature
region belowT,0.17 [12]. The simulation has been done
for 18 ns usingN1=23105 MD steps andT0=0.45e with the
bin size of 0.1 kcal/mol andRc=2.2s (LJ31-I). As expected,
the energy trajectory in Fig. 4(a) shows a characteristic ran-
dom walk including the phase transition region and the
neighborhood of the global minimum of −133.58. The lowest
sampled energy is identified as −133.12 and the weight con-
verges to the valid one at 10th iteration corresponding to
3.2 ns in Fig. 4(b). Both thermodynamic properties ofUsTd
and CvsTd in Fig. 5 show a well defined smooth behavior
without any anomaly of a peak or bump at low temperature
region. However, the specific heat displays an oscillation for
a very low temperature region below 0.05 due to a poor
sampling statistics, in which another narrow phase change
associated with the coexistence of multiple minima has been
predicted aroundT,0.03 by the entropic tempering and har-
monic superposition approximation methods[12]. To exam-
ine this, another AdFB-MCMD simulation(LJ31-II) has

FIG. 3. Average energyUsTd and specific heatCVsTd for FB-
MCMD, AdFB1, and AdFB2.
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been performed for 15 ns with bin size of 0.05 kcal/mol,
focusing on low temperature region of 0.01,T,0.2. As ob-
served in Fig. 5, we found a small peak in the specific heat

aroundT̃,0.035 consistent to previous study[12]. Except

for this narrow temperature region, both simulations of
LJ31-I and LJ31-II give the same thermodynamics.

In summary, we developed the adaptive force-biased mul-
ticanonical molecular dynamics algorithm, which enables a
considerable enhancement for the rate of convergence of
rough energy landscape simulations by combining the adap-
tive refinement for the weight with multiple histogram tech-
nique. We expect that AdFB-MCMD can be also applied to
other complex systems such as spin glasses or protein fold-
ing problem.

We acknowledge that this work was supported by NEDO
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FIG. 4. (a) Energy trajectory(solid) and bond length fluctuation

d (dashed), and(b) effective temperatureT̃ksEd for LJ31-I.

FIG. 5. Average energyUsTd and specific heatCVsTd for LJ31-I
and LJ31-II.
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